Shahi LegalFlowSuite

Advanced Analytics

Build Custom Analytics and Reporting Systems

Analytics Architecture Design

Step 1: Analytics Framework Setup

`
SLOS → Advanced → Analytics → Framework Design
`

Analytics Architecture:
`json
{
“analytics_framework”: {
“data_collection”: {
“methods”: [“eventtracking”, “databasequeries”, “apicalls”, “userinteractions”],
“frequency”: “real_time”,
“retention”: “7_years”,
“anonymization”: “automatic”
},
“data_processing”: {
“engine”: “stream_processing”,
“aggregation”: “multi_level”,
“transformation”: “real_time”,
“validation”: “schema_based”
},
“data_storage”: {
“primary”: “timeseriesdatabase”,
“secondary”: “data_warehouse”,
“caching”: “redis_cluster”,
“backup”: “automated”
},
“analytics_engine”: {
“querylanguage”: “SQLenhanced”,
“visualization”: “custom_dashboards”,
“export”: “multiple_formats”,
“apiaccess”: “restgraphql”
}
},
“analytics_capabilities”: {
“realtimeanalytics”: true,
“predictive_analytics”: true,
“anomaly_detection”: true,
“segmentation”: “advanced”,
“attribution_modeling”: true,
“privacycompliance”: “gdprccpa_compliant”
}
}
`

Step 2: Event Tracking System

`php
// Advanced event tracking and analytics system
class AnalyticsEngine {
private $event_collectors = [];
private $data_processors = [];
private $storage_backends = [];
private $privacy_filters = [];

public function __construct() {
$this->initializeEventCollectors();
$this->setupDataProcessors();
$this->configureStorageBackends();
$this->setupPrivacyFilters();
}

private function initializeEventCollectors() {
// Register event collectors for different data sources
$this->event_collectors = [
‘consent_events’ => new ConsentEventCollector(),
‘user_interactions’ => new UserInteractionCollector(),
‘system_events’ => new SystemEventCollector(),
‘compliance_events’ => new ComplianceEventCollector(),
‘performance_events’ => new PerformanceEventCollector()
];

// Hook into WordPress actions
addaction(‘slosconsentgiven’, [$this->eventcollectors[‘consent_events’], ‘trackConsentGiven’]);
addaction(‘slosconsentwithdrawn’, [$this->eventcollectors[‘consent_events’], ‘trackConsentWithdrawn’]);
addaction(‘wplogin’, [$this->eventcollectors[‘userinteractions’], ‘trackUserLogin’]);
addaction(‘wplogout’, [$this->eventcollectors[‘userinteractions’], ‘trackUserLogout’]);
}

private function setupDataProcessors() {
$this->data_processors = [
‘realtimeprocessor’ => new RealTimeDataProcessor(),
‘batch_processor’ => new BatchDataProcessor(),
‘aggregation_processor’ => new AggregationDataProcessor(),
‘anomaly_detector’ => new AnomalyDetectionProcessor()
];
}

private function configureStorageBackends() {
$this->storage_backends = [
‘time_series’ => new TimeSeriesStorage(),
‘relational’ => new RelationalStorage(),
‘cache’ => new CacheStorage(),
‘archive’ => new ArchiveStorage()
];
}

private function setupPrivacyFilters() {
$this->privacy_filters = [
‘anonymization’ => new DataAnonymizationFilter(),
‘pseudonymization’ => new DataPseudonymizationFilter(),
‘aggregation_filter’ => new AggregationPrivacyFilter(),
‘retention_filter’ => new DataRetentionFilter()
];
}

public function trackEvent($eventtype, $eventdata, $context = []) {
// Apply privacy filters first
$filtereddata = $this->applyPrivacyFilters($eventdata, $context);

// Enrich event data
$enricheddata = $this->enrichEventData($filtereddata, $context);

// Store event
$this->storeEvent($eventtype, $enricheddata);

// Process event in real-time
$this->processEventRealTime($eventtype, $enricheddata);

// Trigger analytics hooks
doaction(‘slosanalyticseventtracked’, $eventtype, $enricheddata);
}

private function applyPrivacyFilters($event_data, $context) {
$filtereddata = $eventdata;

foreach ($this->privacy_filters as $filter) {
$filtereddata = $filter->apply($filtereddata, $context);
}

return $filtered_data;
}

private function enrichEventData($event_data, $context) {
// Add metadata
$eventdata[‘metadata’] = [
‘timestamp’ => time(),
‘session_id’ => $this->getSessionId(),
‘useragent’ => $SERVER[‘HTTPUSERAGENT’] ?? ”,
‘ipaddress’ => $this->anonymizeIpAddress($SERVER[‘REMOTE_ADDR’] ?? ”),
‘geo_location’ => $this->getGeoLocation(),
‘device_info’ => $this->getDeviceInfo()
];

// Add context information
$eventdata[‘context’] = $context;

// Add calculated fields
$eventdata[‘calculated’] = [
‘hourofday’ => date(‘H’, time()),
‘dayofweek’ => date(‘N’, time()),
‘weekofyear’ => date(‘W’, time()),
‘month’ => date(‘m’, time()),
‘year’ => date(‘Y’, time())
];

return $event_data;
}

private function storeEvent($eventtype, $eventdata) {
// Store in time-series database for real-time analytics
$this->storagebackends[‘timeseries’]->store($eventtype, $eventdata);

// Store in relational database for complex queries
$this->storagebackends[‘relational’]->store($eventtype, $event_data);

// Cache recent data
$this->storagebackends[‘cache’]->store($eventtype, $event_data, 3600); // 1 hour TTL
}

private function processEventRealTime($eventtype, $eventdata) {
// Update real-time metrics
$this->dataprocessors[‘realtimeprocessor’]->process($eventtype, $event_data);

// Check for anomalies
$anomalyscore = $this->dataprocessors[‘anomalydetector’]->analyze($eventtype, $event_data);
if ($anomaly_score > 0.8) {
$this->handleAnomaly($eventtype, $eventdata, $anomaly_score);
}
}

private function handleAnomaly($eventtype, $eventdata, $anomaly_score) {
// Log anomaly
errorlog(“Analytics anomaly detected: {$eventtype} with score {$anomaly_score}”);

// Trigger alert
doaction(‘slosanalyticsanomalydetected’, $eventtype, $eventdata, $anomaly_score);

// Store anomaly for analysis
$this->storagebackends[‘relational’]->storeAnomaly($eventtype, $eventdata, $anomalyscore);
}

public function getAnalyticsData($query, $time_range = null, $filters = []) {
// Parse query
$parsed_query = $this->parseAnalyticsQuery($query);

// Apply time range filter
if ($time_range) {
$parsedquery[‘filters’][‘timestamp’] = $timerange;
}

// Apply additional filters
$parsedquery[‘filters’] = arraymerge($parsed_query[‘filters’], $filters);

// Execute query
return $this->executeAnalyticsQuery($parsed_query);
}

private function parseAnalyticsQuery($query) {
// Simple query parser – in production, use a proper query language
$parts = explode(‘ ‘, trim($query));

return [
‘metric’ => $parts[0] ?? ‘count’,
‘event_type’ => $parts[1] ?? ‘*’,
‘group_by’ => $parts[2] ?? null,
‘filters’ => []
];
}

private function executeAnalyticsQuery($parsed_query) {
// Try cache first
$cachekey = ‘analytics‘ . md5(jsonencode($parsedquery));
$cachedresult = $this->storagebackends[‘cache’]->get($cache_key);

if ($cached_result) {
return $cached_result;
}

// Execute query against appropriate storage backend
if ($this->isTimeSeriesQuery($parsed_query)) {
$result = $this->storagebackends[‘timeseries’]->query($parsed_query);
} else {
$result = $this->storagebackends[‘relational’]->query($parsedquery);
}

// Cache result
$this->storagebackends[‘cache’]->store($cachekey, $result, 300); // 5 minute TTL

return $result;
}

private function isTimeSeriesQuery($query) {
// Determine if query should use time-series storage
return isset($query[‘filters’][‘timestamp’]) ||
inarray($query[‘metric’], [‘countover_time’, ‘rate’, ‘increase’]);
}

public function getRealTimeMetrics() {
return $this->dataprocessors[‘realtime_processor’]->getCurrentMetrics();
}

public function generateReport($report_type, $parameters = []) {
$reportgenerator = new ReportGenerator($reporttype, $parameters);
return $report_generator->generate();
}

public function exportAnalyticsData($format, $query, $time_range = null) {
$data = $this->getAnalyticsData($query, $time_range);

switch ($format) {
case ‘csv’:
return $this->exportToCSV($data);
case ‘json’:
return json_encode($data);
case ‘xml’:
return $this->exportToXML($data);
default:
throw new Exception(“Unsupported export format: {$format}”);
}
}

private function exportToCSV($data) {
if (empty($data)) return ”;

$output = fopen(‘php://temp’, ‘r+’);

// Write headers
if (is_array($data) && isset($data[0])) {
fputcsv($output, array_keys($data[0]));
}

// Write data
foreach ($data as $row) {
fputcsv($output, $row);
}

rewind($output);
$csv = streamgetcontents($output);
fclose($output);

return $csv;
}

private function exportToXML($data) {
$xml = new SimpleXMLElement(‘‘);

foreach ($data as $row) {
$item = $xml->addChild(‘item’);
foreach ($row as $key => $value) {
$item->addChild($key, htmlspecialchars($value));
}
}

return $xml->asXML();
}

// Utility methods
private function getSessionId() {
if (!session_id()) {
session_start();
}
return session_id();
}

private function anonymizeIpAddress($ip) {
// Anonymize IP address for privacy compliance
if (filtervar($ip, FILTERVALIDATEIP, FILTERFLAG_IPV4)) {
$parts = explode(‘.’, $ip);
return $parts[0] . ‘.’ . $parts[1] . ‘.0.0’;
} elseif (filtervar($ip, FILTERVALIDATEIP, FILTERFLAG_IPV6)) {
$parts = explode(‘:’, $ip);
return $parts[0] . ‘:’ . $parts[1] . ‘::’;
}
return ‘unknown’;
}

private function getGeoLocation() {
// Get geo location from IP (simplified)
return [
‘country’ => ‘Unknown’,
‘region’ => ‘Unknown’,
‘city’ => ‘Unknown’
];
}

private function getDeviceInfo() {
$useragent = $SERVER[‘HTTPUSERAGENT’] ?? ”;
return [
‘browser’ => $this->detectBrowser($user_agent),
‘os’ => $this->detectOS($user_agent),
‘devicetype’ => $this->detectDeviceType($useragent)
];
}

private function detectBrowser($user_agent) {
if (strpos($user_agent, ‘Chrome’) !== false) return ‘Chrome’;
if (strpos($user_agent, ‘Firefox’) !== false) return ‘Firefox’;
if (strpos($user_agent, ‘Safari’) !== false) return ‘Safari’;
if (strpos($user_agent, ‘Edge’) !== false) return ‘Edge’;
return ‘Unknown’;
}

private function detectOS($user_agent) {
if (strpos($user_agent, ‘Windows’) !== false) return ‘Windows’;
if (strpos($user_agent, ‘Mac’) !== false) return ‘macOS’;
if (strpos($user_agent, ‘Linux’) !== false) return ‘Linux’;
if (strpos($user_agent, ‘Android’) !== false) return ‘Android’;
if (strpos($user_agent, ‘iOS’) !== false) return ‘iOS’;
return ‘Unknown’;
}

private function detectDeviceType($user_agent) {
if (strpos($user_agent, ‘Mobile’) !== false) return ‘Mobile’;
if (strpos($user_agent, ‘Tablet’) !== false) return ‘Tablet’;
return ‘Desktop’;
}
}
`

Advanced Segmentation and Targeting

Step 1: User Segmentation Engine

`
SLOS → Advanced → Analytics → User Segmentation
`

Segmentation Architecture:
`json
{
“segmentation_engine”: {
“segmentation_types”: [
{
“type”: “behavioral_segmentation”,
“description”: “Segment based on user behavior patterns”,
“attributes”: [“pageviews”, “timespent”, “conversionactions”, “engagementscore”]
},
{
“type”: “demographic_segmentation”,
“description”: “Segment based on user demographics”,
“attributes”: [“age”, “location”, “language”, “device_type”]
},
{
“type”: “consentbasedsegmentation”,
“description”: “Segment based on consent preferences”,
“attributes”: [“consentcategories”, “consentlevel”, “withdrawal_history”]
},
{
“type”: “lifecycle_segmentation”,
“description”: “Segment based on user lifecycle stage”,
“attributes”: [“registrationdate”, “lastactivity”, “loyaltyscore”, “churnrisk”]
}
],
“segmentation_rules”: {
“rule_engine”: “declarative”,
“operators”: [“equals”, “contains”, “greaterthan”, “lessthan”, “between”, “in”],
“logic”: [“AND”, “OR”, “NOT”],
“nesting”: “unlimited”
},
“segment_calculation”: {
“frequency”: “real_time”,
“method”: “streaming_aggregation”,
“caching”: “intelligent”,
“persistence”: “database”
}
},
“segmentation_capabilities”: {
“dynamic_segments”: true,
“nested_segments”: true,
“segmentoverlapanalysis”: true,
“segmentperformancetracking”: true,
“predictive_segmentation”: true
}
}
`

Step 2: Segmentation Engine Implementation

`php
// Advanced user segmentation and targeting engine
class SegmentationEngine {
private $segment_definitions = [];
private $user_segments = [];
private $segment_cache = [];
private $rule_engine = null;

public function __construct() {
$this->rule_engine = new SegmentationRuleEngine();
$this->loadSegmentDefinitions();
$this->initializeSegmentCache();
}

private function loadSegmentDefinitions() {
global $wpdb;

$segments = $wpdb->get_results(“
SELECT * FROM wpslossegments
WHERE active = 1
“);

foreach ($segments as $segment) {
$this->segment_definitions[$segment->id] = [
‘id’ => $segment->id,
‘name’ => $segment->name,
‘description’ => $segment->description,
‘rules’ => json_decode($segment->rules, true),
‘createdat’ => $segment->createdat,
‘updatedat’ => $segment->updatedat
];
}
}

private function initializeSegmentCache() {
// Initialize cache for frequently accessed segments
$this->segment_cache = new SegmentCache();
}

public function createSegment($name, $description, $rules) {
global $wpdb;

// Validate rules
if (!$this->validateSegmentRules($rules)) {
throw new Exception(‘Invalid segment rules’);
}

$segmentid = wpgenerate_password(12, false);

$wpdb->insert(‘wpslossegments’, [
‘id’ => $segment_id,
‘name’ => $name,
‘description’ => $description,
‘rules’ => json_encode($rules),
‘active’ => 1,
‘createdat’ => currenttime(‘mysql’),
‘updatedat’ => currenttime(‘mysql’)
]);

$this->segmentdefinitions[$segmentid] = [
‘id’ => $segment_id,
‘name’ => $name,
‘description’ => $description,
‘rules’ => $rules,
‘createdat’ => currenttime(‘mysql’),
‘updatedat’ => currenttime(‘mysql’)
];

return $segment_id;
}

public function updateSegment($segment_id, $name, $description, $rules) {
global $wpdb;

if (!isset($this->segmentdefinitions[$segmentid])) {
throw new Exception(‘Segment not found’);
}

// Validate rules
if (!$this->validateSegmentRules($rules)) {
throw new Exception(‘Invalid segment rules’);
}

$wpdb->update(‘wpslossegments’, [
‘name’ => $name,
‘description’ => $description,
‘rules’ => json_encode($rules),
‘updatedat’ => currenttime(‘mysql’)
], [‘id’ => $segment_id]);

$this->segmentdefinitions[$segmentid][‘name’] = $name;
$this->segmentdefinitions[$segmentid][‘description’] = $description;
$this->segmentdefinitions[$segmentid][‘rules’] = $rules;
$this->segmentdefinitions[$segmentid][‘updatedat’] = currenttime(‘mysql’);

// Clear cache for this segment
$this->segmentcache->clearSegment($segmentid);

return true;
}

public function deleteSegment($segment_id) {
global $wpdb;

if (!isset($this->segmentdefinitions[$segmentid])) {
throw new Exception(‘Segment not found’);
}

$wpdb->update(‘wpslossegments’, [
‘active’ => 0,
‘updatedat’ => currenttime(‘mysql’)
], [‘id’ => $segment_id]);

unset($this->segmentdefinitions[$segmentid]);
$this->segmentcache->clearSegment($segmentid);

return true;
}

public function evaluateUserSegment($userid, $segmentid) {
// Check cache first
$cachedresult = $this->segmentcache->getUserSegment($userid, $segmentid);
if ($cached_result !== null) {
return $cached_result;
}

if (!isset($this->segmentdefinitions[$segmentid])) {
return false;
}

$segment = $this->segmentdefinitions[$segmentid];
$userdata = $this->getUserData($userid);

$result = $this->ruleengine->evaluateRules($segment[‘rules’], $userdata);

// Cache result
$this->segmentcache->setUserSegment($userid, $segment_id, $result);

return $result;
}

public function getUserSegments($user_id) {
$user_segments = [];

foreach ($this->segmentdefinitions as $segmentid => $segment) {
if ($this->evaluateUserSegment($userid, $segmentid)) {
$usersegments[] = $segmentid;
}
}

return $user_segments;
}

public function getSegmentUsers($segment_id, $limit = null, $offset = 0) {
if (!isset($this->segmentdefinitions[$segmentid])) {
return [];
}

// For large user bases, this needs optimization
// In production, pre-calculate segment memberships
$users = $this->getAllUsers();

$segment_users = [];
foreach ($users as $user_id) {
if ($this->evaluateUserSegment($userid, $segmentid)) {
$segmentusers[] = $userid;
if ($limit && count($segment_users) >= $limit + $offset) {
break;
}
}
}

return arrayslice($segmentusers, $offset, $limit);
}

public function getSegmentSize($segment_id) {
// Use cached count if available
$cachedcount = $this->segmentcache->getSegmentSize($segment_id);
if ($cached_count !== null) {
return $cached_count;
}

$users = $this->getSegmentUsers($segment_id);
$count = count($users);

// Cache the count
$this->segmentcache->setSegmentSize($segmentid, $count);

return $count;
}

public function analyzeSegmentOverlap($segment_ids) {
$overlap_analysis = [];

// Calculate pairwise overlaps
for ($i = 0; $i < count($segment_ids); $i++) { for ($j = $i + 1; $j < count($segment_ids); $j++) { $segmenta = $segmentids[$i];
$segmentb = $segmentids[$j];

$overlap = $this->calculateSegmentOverlap($segmenta, $segmentb);
$overlapanalysis[“{$segmenta}{$segmentb}”] = $overlap;
}
}

return $overlap_analysis;
}

private function calculateSegmentOverlap($segmenta, $segmentb) {
$usersa = $this->getSegmentUsers($segmenta);
$usersb = $this->getSegmentUsers($segmentb);

$intersection = arrayintersect($usersa, $users_b);
$union = arrayunique(arraymerge($usersa, $usersb));

return [
‘overlap_count’ => count($intersection),
‘overlap_percentage’ => count($union) > 0 ? (count($intersection) / count($union)) * 100 : 0,
‘jaccard_similarity’ => count($union) > 0 ? count($intersection) / count($union) : 0
];
}

public function getSegmentPerformance($segmentid, $timerange = 30) {
// Analyze how well this segment performs for various metrics
$segmentusers = $this->getSegmentUsers($segmentid);

if (empty($segment_users)) {
return null;
}

$analytics = new AnalyticsEngine();

// Calculate key performance indicators
$consent_rate = $analytics->getAnalyticsData(
“consentrate segment:{$segmentid}”,
“-{$time_range}d”
);

$engagement_score = $analytics->getAnalyticsData(
“avgengagement segment:{$segmentid}”,
“-{$time_range}d”
);

$conversion_rate = $analytics->getAnalyticsData(
“conversionrate segment:{$segmentid}”,
“-{$time_range}d”
);

return [
‘segmentid’ => $segmentid,
‘segmentsize’ => count($segmentusers),
‘timerangedays’ => $time_range,
‘metrics’ => [
‘consentrate’ => $consentrate,
‘engagementscore’ => $engagementscore,
‘conversionrate’ => $conversionrate
]
];
}

public function createDynamicSegment($name, $description, $base_segment, $modifiers) {
// Create a dynamic segment based on another segment with modifications
if (!isset($this->segmentdefinitions[$basesegment])) {
throw new Exception(‘Base segment not found’);
}

$baserules = $this->segmentdefinitions[$base_segment][‘rules’];
$modifiedrules = $this->applyModifiers($baserules, $modifiers);

return $this->createSegment($name, $description, $modified_rules);
}

private function applyModifiers($rules, $modifiers) {
// Apply modifications to segment rules
$modified_rules = $rules;

foreach ($modifiers as $modifier) {
switch ($modifier[‘type’]) {
case ‘add_condition’:
$modifiedrules = $this->addConditionToRules($modifiedrules, $modifier[‘condition’]);
break;
case ‘remove_condition’:
$modifiedrules = $this->removeConditionFromRules($modifiedrules, $modifier[‘condition_id’]);
break;
case ‘modify_condition’:
$modifiedrules = $this->modifyConditionInRules($modifiedrules, $modifier[‘conditionid’], $modifier[‘newcondition’]);
break;
}
}

return $modified_rules;
}

private function validateSegmentRules($rules) {
// Basic validation of segment rules structure
return isarray($rules) && $this->ruleengine->validateRules($rules);
}

private function getUserData($user_id) {
// Get comprehensive user data for segmentation
$user = getuserdata($userid);

if (!$user) {
return null;
}

// Get additional user data from SLOS
$consentdata = $this->getUserConsentData($userid);
$behaviordata = $this->getUserBehaviorData($userid);
$engagementdata = $this->getUserEngagementData($userid);

return [
‘userid’ => $userid,
’email’ => $user->user_email,
‘registrationdate’ => $user->userregistered,
‘lastlogin’ => getusermeta($userid, ‘last_login’, true),
‘role’ => $user->roles[0] ?? ‘subscriber’,
‘consentdata’ => $consentdata,
‘behaviordata’ => $behaviordata,
‘engagementdata’ => $engagementdata
];
}

private function getUserConsentData($user_id) {
global $wpdb;

return $wpdb->get_row($wpdb->prepare(“
SELECT * FROM wpslosuser_consent
WHERE user_id = %d
ORDER BY created_at DESC
LIMIT 1
“, $userid), ARRAYA);
}

private function getUserBehaviorData($user_id) {
$analytics = new AnalyticsEngine();

return [
‘pageviews’ => $analytics->getAnalyticsData(“pageviews user:{$user_id}”, “-30d”),
‘timespent’ => $analytics->getAnalyticsData(“timespent user:{$user_id}”, “-30d”),
‘actionstaken’ => $analytics->getAnalyticsData(“actions user:{$userid}”, “-30d”)
];
}

private function getUserEngagementData($user_id) {
// Calculate engagement score based on various factors
$behaviordata = $this->getUserBehaviorData($userid);

$engagement_score = 0;

if ($behaviordata[‘pageviews’] > 10) $engagement_score += 20;
if ($behaviordata[‘timespent’] > 300) $engagement_score += 30; // 5+ minutes
if ($behaviordata[‘actionstaken’] > 5) $engagement_score += 25;

// Cap at 100
$engagementscore = min($engagementscore, 100);

return [
‘engagementscore’ => $engagementscore,
‘engagementlevel’ => $this->getEngagementLevel($engagementscore)
];
}

private function getEngagementLevel($score) {
if ($score >= 80) return ‘high’;
if ($score >= 50) return ‘medium’;
return ‘low’;
}

private function getAllUsers() {
// Get all user IDs (simplified – in production, use pagination)
$users = get_users([‘fields’ => ‘ID’]);
return $users;
}

// Helper methods for rule manipulation
private function addConditionToRules($rules, $condition) {
// Add condition to rules (simplified implementation)
if (!isset($rules[‘conditions’])) {
$rules[‘conditions’] = [];
}
$rules[‘conditions’][] = $condition;
return $rules;
}

private function removeConditionFromRules($rules, $condition_id) {
// Remove condition from rules (simplified implementation)
if (isset($rules[‘conditions’])) {
unset($rules[‘conditions’][$condition_id]);
}
return $rules;
}

private function modifyConditionInRules($rules, $conditionid, $newcondition) {
// Modify condition in rules (simplified implementation)
if (isset($rules[‘conditions’][$condition_id])) {
$rules[‘conditions’][$conditionid] = $newcondition;
}
return $rules;
}
}
`

Predictive Analytics and Machine Learning

Step 1: Predictive Modeling Framework

`
SLOS → Advanced → Analytics → Predictive Analytics
`

Predictive Analytics Architecture:
`json
{
“predictive_engine”: {
“models”: [
{
“model”: “consentwithdrawalprediction”,
“description”: “Predict users likely to withdraw consent”,
“algorithm”: “gradient_boosting”,
“features”: [“engagementscore”, “consentage”, “interactionfrequency”, “complainthistory”],
“accuracy_target”: “85%”
},
{
“model”: “complianceriskprediction”,
“description”: “Predict compliance violation risk”,
“algorithm”: “random_forest”,
“features”: [“userbehavior”, “consentpatterns”, “geographiclocation”, “devicefingerprint”],
“accuracy_target”: “90%”
},
{
“model”: “churn_prediction”,
“description”: “Predict user churn probability”,
“algorithm”: “neural_network”,
“features”: [“activitytrend”, “consentchanges”, “supporttickets”, “featureusage”],
“accuracy_target”: “82%”
},
{
“model”: “lifecycle_prediction”,
“description”: “Predict user lifecycle stage transitions”,
“algorithm”: “markov_chain”,
“features”: [“currentstage”, “timeinstage”, “engagementmetrics”, “external_events”],
“accuracy_target”: “88%”
}
],
“training_pipeline”: {
“data_preparation”: “automated”,
“featureengineering”: “domainspecific”,
“model_selection”: “automated”,
“validation”: “cross_validation”,
“deployment”: “continuous”
},
“realtimescoring”: {
“latency_target”: “<100ms", "throughputtarget”: “1000predictionspersecond”,
“caching_strategy”: “intelligent”,
“fallbackmechanism”: “rulebased”
}
},
“predictive_capabilities”: {
“realtimepredictions”: true,
“batch_predictions”: true,
“model_explainability”: true,
“bias_detection”: true,
“performance_monitoring”: true
}
}
`

Step 2: Predictive Analytics Engine

`php
// Advanced predictive analytics and machine learning engine
class PredictiveAnalyticsEngine {
private $models = [];
private $feature_engine = null;
private $model_trainer = null;
private $prediction_cache = null;

public function __construct() {
$this->feature_engine = new FeatureEngineeringEngine();
$this->model_trainer = new ModelTrainingEngine();
$this->prediction_cache = new PredictionCache();
$this->loadModels();
}

private function loadModels() {
// Load trained models from storage
$this->models = [
‘consentwithdrawal’ => $this->loadModel(‘consentwithdrawal_prediction’),
‘compliancerisk’ => $this->loadModel(‘compliancerisk_prediction’),
‘churn’ => $this->loadModel(‘churn_prediction’),
‘lifecycle’ => $this->loadModel(‘lifecycle_prediction’)
];
}

private function loadModel($model_name) {
// Load model from file or database
$modelpath = WPCONTENTDIR . “/slos-models/{$modelname}.model”;

if (fileexists($modelpath)) {
return unserialize(filegetcontents($model_path));
}

return null;
}

public function predictConsentWithdrawal($user_id, $context = []) {
if (!$this->models[‘consent_withdrawal’]) {
return $this->fallbackConsentWithdrawalPrediction($user_id);
}

// Check cache first
$cachekey = “consentwithdrawal{$userid}”;
$cachedprediction = $this->predictioncache->get($cache_key);

if ($cached_prediction) {
return $cached_prediction;
}

// Extract features
$features = $this->featureengine->extractConsentWithdrawalFeatures($userid, $context);

// Make prediction
$prediction = $this->models[‘consent_withdrawal’]->predict([$features]);

$result = [
‘userid’ => $userid,
‘prediction’ => $prediction[0],
‘probability’ => $prediction[1] ?? null,
‘confidence’ => $this->calculateConfidence($prediction),
‘timestamp’ => time(),
‘featuresused’ => arraykeys($features)
];

// Cache prediction (short TTL for real-time accuracy)
$this->predictioncache->set($cachekey, $result, 1800); // 30 minutes

return $result;
}

public function predictComplianceRisk($user_id, $context = []) {
if (!$this->models[‘compliance_risk’]) {
return $this->fallbackComplianceRiskPrediction($user_id);
}

$cachekey = “compliancerisk{$userid}”;
$cachedprediction = $this->predictioncache->get($cache_key);

if ($cached_prediction) {
return $cached_prediction;
}

$features = $this->featureengine->extractComplianceRiskFeatures($userid, $context);
$prediction = $this->models[‘compliance_risk’]->predict([$features]);

$result = [
‘userid’ => $userid,
‘risk_level’ => $this->mapRiskScoreToLevel($prediction[0]),
‘risk_score’ => $prediction[0],
‘probability’ => $prediction[1] ?? null,
‘confidence’ => $this->calculateConfidence($prediction),
‘timestamp’ => time(),
‘featuresused’ => arraykeys($features),
‘recommendations’ => $this->generateRiskRecommendations($prediction[0])
];

$this->predictioncache->set($cachekey, $result, 3600); // 1 hour

return $result;
}

public function predictChurn($user_id, $context = []) {
if (!$this->models[‘churn’]) {
return $this->fallbackChurnPrediction($user_id);
}

$cachekey = “churn{$user_id}”;
$cachedprediction = $this->predictioncache->get($cache_key);

if ($cached_prediction) {
return $cached_prediction;
}

$features = $this->featureengine->extractChurnFeatures($userid, $context);
$prediction = $this->models[‘churn’]->predict([$features]);

$result = [
‘userid’ => $userid,
‘churn_probability’ => $prediction[0],
‘churnrisklevel’ => $this->mapChurnProbabilityToLevel($prediction[0]),
‘confidence’ => $this->calculateConfidence($prediction),
‘timestamp’ => time(),
‘featuresused’ => arraykeys($features),
‘retention_recommendations’ => $this->generateRetentionRecommendations($prediction[0])
];

$this->predictioncache->set($cachekey, $result, 7200); // 2 hours

return $result;
}

public function predictLifecycleStage($user_id, $context = []) {
if (!$this->models[‘lifecycle’]) {
return $this->fallbackLifecyclePrediction($user_id);
}

$cachekey = “lifecycle{$user_id}”;
$cachedprediction = $this->predictioncache->get($cache_key);

if ($cached_prediction) {
return $cached_prediction;
}

$features = $this->featureengine->extractLifecycleFeatures($userid, $context);
$prediction = $this->models[‘lifecycle’]->predict([$features]);

$result = [
‘userid’ => $userid,
‘currentstage’ => $this->getCurrentLifecycleStage($userid),
‘predictednextstage’ => $prediction[0],
‘transition_probability’ => $prediction[1] ?? null,
‘timetotransition’ => $prediction[2] ?? null,
‘confidence’ => $this->calculateConfidence($prediction),
‘timestamp’ => time(),
‘featuresused’ => arraykeys($features)
];

$this->predictioncache->set($cachekey, $result, 86400); // 24 hours

return $result;
}

public function trainModel($modelname, $trainingdata = null) {
if (!$training_data) {
$trainingdata = $this->prepareTrainingData($modelname);
}

$model = $this->modeltrainer->train($modelname, $training_data);

// Save trained model
$this->saveModel($model_name, $model);

// Update loaded models
$this->models[$model_name] = $model;

// Clear related caches
$this->predictioncache->clearPattern(“{$modelname}_*”);

return [
‘modelname’ => $modelname,
‘training_completed’ => true,
‘accuracy_score’ => $model->getAccuracy(),
‘training_time’ => time()
];
}

private function prepareTrainingData($model_name) {
switch ($model_name) {
case ‘consent_withdrawal’:
return $this->prepareConsentWithdrawalTrainingData();
case ‘compliance_risk’:
return $this->prepareComplianceRiskTrainingData();
case ‘churn’:
return $this->prepareChurnTrainingData();
case ‘lifecycle’:
return $this->prepareLifecycleTrainingData();
default:
throw new Exception(“Unknown model: {$model_name}”);
}
}

private function prepareConsentWithdrawalTrainingData() {
global $wpdb;

// Get historical consent withdrawal data
$data = $wpdb->get_results(“
SELECT
u.ID as user_id,
u.user_registered,
COALESCE(uc.consentgiven, 0) as consentgiven,
COALESCE(uc.consentwithdrawn, 0) as consentwithdrawn,
COALESCE(a.pageviews, 0) as pageviews,
COALESCE(a.timespent, 0) as timespent
FROM wp_users u
LEFT JOIN wpslosuserconsent uc ON u.ID = uc.userid
LEFT JOIN wpslosuseranalytics a ON u.ID = a.userid
WHERE u.userregistered < DATESUB(NOW(), INTERVAL 30 DAY)
“);

$training_data = [];
foreach ($data as $row) {
$features = $this->featureengine->extractConsentWithdrawalFeatures($row->userid);
$label = $row->consent_withdrawn > 0 ? 1 : 0;

$trainingdata[] = arraymerge($features, [‘label’ => $label]);
}

return $training_data;
}

private function prepareComplianceRiskTrainingData() {
// Similar implementation for compliance risk training data
return [];
}

private function prepareChurnTrainingData() {
// Similar implementation for churn training data
return [];
}

private function prepareLifecycleTrainingData() {
// Similar implementation for lifecycle training data
return [];
}

private function saveModel($model_name, $model) {
$modelpath = WPCONTENTDIR . “/slos-models/{$modelname}.model”;
$modeldir = dirname($modelpath);

if (!isdir($modeldir)) {
mkdir($model_dir, 0755, true);
}

fileputcontents($model_path, serialize($model));
}

// Fallback prediction methods
private function fallbackConsentWithdrawalPrediction($user_id) {
// Rule-based fallback
$userdata = $this->getUserData($userid);
$risk_score = 0;

if ($userdata[‘dayssincelastactivity’] > 90) $risk_score += 0.3;
if ($userdata[‘complaintcount’] > 0) $risk_score += 0.2;
if ($userdata[‘consentchanges’] > 2) $risk_score += 0.1;

return [
‘userid’ => $userid,
‘prediction’ => $risk_score > 0.3 ? 1 : 0,
‘probability’ => $risk_score,
‘confidence’ => ‘low’,
‘method’ => ‘rulebasedfallback’
];
}

private function fallbackComplianceRiskPrediction($user_id) {
return [
‘userid’ => $userid,
‘risk_level’ => ‘medium’,
‘risk_score’ => 0.5,
‘confidence’ => ‘low’,
‘method’ => ‘rulebasedfallback’
];
}

private function fallbackChurnPrediction($user_id) {
return [
‘userid’ => $userid,
‘churn_probability’ => 0.2,
‘churnrisklevel’ => ‘low’,
‘confidence’ => ‘low’,
‘method’ => ‘rulebasedfallback’
];
}

private function fallbackLifecyclePrediction($user_id) {
return [
‘userid’ => $userid,
‘currentstage’ => $this->getCurrentLifecycleStage($userid),
‘predictednextstage’ => ‘engaged’,
‘confidence’ => ‘low’,
‘method’ => ‘rulebasedfallback’
];
}

// Helper methods
private function calculateConfidence($prediction) {
// Simplified confidence calculation
if (is_array($prediction) && isset($prediction[1])) {
$probability = $prediction[1];
if ($probability > 0.8) return ‘high’;
if ($probability > 0.6) return ‘medium’;
return ‘low’;
}
return ‘unknown’;
}

private function mapRiskScoreToLevel($score) {
if ($score > 0.7) return ‘high’;
if ($score > 0.4) return ‘medium’;
return ‘low’;
}

private function mapChurnProbabilityToLevel($probability) {
if ($probability > 0.7) return ‘high’;
if ($probability > 0.4) return ‘medium’;
return ‘low’;
}

private function generateRiskRecommendations($risk_score) {
$recommendations = [];

if ($risk_score > 0.7) {
$recommendations[] = ‘Immediate compliance review required’;
$recommendations[] = ‘Enhanced monitoring activated’;
} elseif ($risk_score > 0.4) {
$recommendations[] = ‘Regular compliance monitoring recommended’;
$recommendations[] = ‘Additional consent verification suggested’;
}

return $recommendations;
}

private function generateRetentionRecommendations($churn_probability) {
$recommendations = [];

if ($churn_probability > 0.7) {
$recommendations[] = ‘Urgent retention campaign needed’;
$recommendations[] = ‘Personalized re-engagement email’;
} elseif ($churn_probability > 0.4) {
$recommendations[] = ‘Targeted retention offers’;
$recommendations[] = ‘Survey to understand concerns’;
}

return $recommendations;
}

private function getCurrentLifecycleStage($user_id) {
// Determine current lifecycle stage based on user data
$userdata = $this->getUserData($userid);

if ($userdata[‘dayssince_registration’] < 7) return 'new'; if ($userdata[‘engagementscore’] > 80) return ‘champion’;
if ($userdata[‘engagementscore’] > 50) return ‘engaged’;
if ($userdata[‘dayssincelastactivity’] > 60) return ‘at_risk’;

return ‘regular’;
}

private function getUserData($user_id) {
// Get comprehensive user data for predictions
global $wpdb;

$user = getuserdata($userid);
if (!$user) return null;

$analytics = $wpdb->get_row($wpdb->prepare(“
SELECT * FROM wpslosuser_analytics
WHERE user_id = %d
“, $userid), ARRAYA);

return [
‘userid’ => $userid,
‘dayssinceregistration’ => floor((time() – strtotime($user->user_registered)) / 86400),
‘dayssincelastactivity’ => isset($analytics[‘lastactivity’]) ?
floor((time() – strtotime($analytics[‘last_activity’])) / 86400) : 999,
‘engagementscore’ => $analytics[‘engagementscore’] ?? 0,
‘complaintcount’ => $analytics[‘complaintcount’] ?? 0,
‘consentchanges’ => $analytics[‘consentchanges’] ?? 0
];
}
}
`

Custom Reporting and Visualization

Step 1: Report Generation Engine

`
SLOS → Advanced → Analytics → Custom Reporting
`

Reporting Architecture:
`json
{
“reporting_engine”: {
“report_types”: [
{
“type”: “compliance_reports”,
“description”: “GDPR/CCPA compliance status reports”,
“frequency”: “monthly”,
“audience”: [“compliance_officers”, “executives”],
“format”: [“PDF”, “Excel”, “HTML”]
},
{
“type”: “performance_reports”,
“description”: “System performance and analytics reports”,
“frequency”: “weekly”,
“audience”: [“developers”, “system_administrators”],
“format”: [“PDF”, “JSON”, “CSV”]
},
{
“type”: “userengagementreports”,
“description”: “User behavior and engagement analytics”,
“frequency”: “daily”,
“audience”: [“marketing”, “product_managers”],
“format”: [“PDF”, “Excel”, “Dashboard”]
},
{
“type”: “riskassessmentreports”,
“description”: “Compliance risk and predictive analytics”,
“frequency”: “quarterly”,
“audience”: [“risk_managers”, “auditors”],
“format”: [“PDF”, “Excel”, “Interactive”]
}
],
“report_generation”: {
“engine”: “template_based”,
“datasources”: [“database”, “analyticsengine”, “external_apis”],
“scheduling”: “automated”,
“distribution”: “multi_channel”
},
“visualization_engine”: {
“library”: “chartjsd3″,
“interactivity”: “full”,
“responsiveness”: “mobile_first”,
“accessibility”: “wcag_compliant”
}
},
“reporting_capabilities”: {
“scheduled_reports”: true,
“adhocreports”: true,
“custom_dashboards”: true,
“data_export”: true,
“report_sharing”: true
}
}
`

Step 2: Custom Reporting Engine

`php
// Advanced custom reporting and visualization engine
class CustomReportingEngine {
private $report_templates = [];
private $data_sources = [];
private $visualization_engine = null;
private $scheduler = null;

public function __construct() {
$this->visualization_engine = new VisualizationEngine();
$this->scheduler = new ReportScheduler();
$this->loadReportTemplates();
$this->initializeDataSources();
}

private function loadReportTemplates() {
$this->report_templates = [
‘compliance_status’ => [
‘name’ => ‘Compliance Status Report’,
‘template’ => ‘compliance_status.twig’,
‘data_queries’ => [
‘consentstats’ => ‘compliance.consentstatistics’,
‘violationlog’ => ‘compliance.violationlog’,
‘audittrail’ => ‘compliance.audittrail’
],
‘charts’ => [‘consenttrends’, ‘violationchart’, ‘compliancescoregauge’],
‘schedule’ => ‘monthly’
],
‘user_engagement’ => [
‘name’ => ‘User Engagement Report’,
‘template’ => ‘user_engagement.twig’,
‘data_queries’ => [
‘engagementmetrics’ => ‘analytics.userengagement’,
‘behaviorpatterns’ => ‘analytics.behaviorpatterns’,
‘conversionfunnel’ => ‘analytics.conversionfunnel’
],
‘charts’ => [‘engagementtrends’, ‘behaviorheatmap’, ‘funnel_chart’],
‘schedule’ => ‘weekly’
],
‘performance_dashboard’ => [
‘name’ => ‘Performance Dashboard’,
‘template’ => ‘performance_dashboard.twig’,
‘data_queries’ => [
‘systemmetrics’ => ‘performance.systemmetrics’,
‘responsetimes’ => ‘performance.responsetimes’,
‘errorrates’ => ‘performance.errorrates’
],
‘charts’ => [‘performancetrends’, ‘responsetimechart’, ‘errorrate_gauge’],
‘schedule’ => ‘daily’
],
‘risk_assessment’ => [
‘name’ => ‘Risk Assessment Report’,
‘template’ => ‘risk_assessment.twig’,
‘data_queries’ => [
‘riskscores’ => ‘predictive.riskscores’,
‘compliancepredictions’ => ‘predictive.compliancepredictions’,
‘churnanalysis’ => ‘predictive.churnanalysis’
],
‘charts’ => [‘riskheatmap’, ‘predictiontrends’, ‘churnprobabilitychart’],
‘schedule’ => ‘quarterly’
]
];
}

private function initializeDataSources() {
$this->data_sources = [
‘database’ => new DatabaseDataSource(),
‘analytics’ => new AnalyticsDataSource(),
‘predictive’ => new PredictiveDataSource(),
‘performance’ => new PerformanceDataSource(),
‘compliance’ => new ComplianceDataSource()
];
}

public function generateReport($report_type, $parameters = [], $format = ‘PDF’) {
if (!isset($this->reporttemplates[$reporttype])) {
throw new Exception(“Report type ‘{$report_type}’ not found”);
}

$template = $this->reporttemplates[$reporttype];

// Gather data from multiple sources
$reportdata = $this->gatherReportData($template[‘dataqueries’], $parameters);

// Generate visualizations
$charts = $this->generateReportCharts($template[‘charts’], $report_data);

// Apply template
$rendered_report = $this->renderReportTemplate($template[‘template’], [
‘data’ => $report_data,
‘charts’ => $charts,
‘parameters’ => $parameters,
‘generated_at’ => date(‘Y-m-d H:i:s’)
]);

// Convert to requested format
return $this->convertReportFormat($rendered_report, $format);
}

private function gatherReportData($data_queries, $parameters) {
$report_data = [];

foreach ($dataqueries as $key => $querypath) {
list($source, $query) = explode(‘.’, $query_path, 2);

if (isset($this->data_sources[$source])) {
$reportdata[$key] = $this->datasources[$source]->executeQuery($query, $parameters);
}
}

return $report_data;
}

private function generateReportCharts($chartdefinitions, $reportdata) {
$charts = [];

foreach ($chartdefinitions as $chartkey) {
$chartconfig = $this->getChartConfiguration($chartkey);
$chartdata = $this->extractChartData($chartconfig, $report_data);

$charts[$chartkey] = $this->visualizationengine->generateChart(
$chart_config[‘type’],
$chart_data,
$chart_config[‘options’]
);
}

return $charts;
}

private function getChartConfiguration($chart_key) {
$chart_configs = [
‘consent_trends’ => [
‘type’ => ‘line’,
‘datasource’ => ‘consentstats’,
‘options’ => [
‘title’ => ‘Consent Trends Over Time’,
‘x_axis’ => ‘date’,
‘y_axis’ => ‘count’,
‘colors’ => [‘#4CAF50’, ‘#F44336’]
]
],
‘violation_chart’ => [
‘type’ => ‘bar’,
‘datasource’ => ‘violationlog’,
‘options’ => [
‘title’ => ‘Compliance Violations by Type’,
‘xaxis’ => ‘violationtype’,
‘y_axis’ => ‘count’,
‘colors’ => [‘#FF9800’]
]
],
‘engagement_trends’ => [
‘type’ => ‘area’,
‘datasource’ => ‘engagementmetrics’,
‘options’ => [
‘title’ => ‘User Engagement Trends’,
‘x_axis’ => ‘date’,
‘yaxis’ => ‘engagementscore’,
‘colors’ => [‘#2196F3’]
]
],
‘behavior_heatmap’ => [
‘type’ => ‘heatmap’,
‘datasource’ => ‘behaviorpatterns’,
‘options’ => [
‘title’ => ‘User Behavior Heatmap’,
‘xaxis’ => ‘hourof_day’,
‘yaxis’ => ‘dayof_week’,
‘colors’ => [‘#E3F2FD’, ‘#2196F3’]
]
]
];

return $chartconfigs[$chartkey] ?? null;
}

private function extractChartData($chartconfig, $reportdata) {
$datasource = $chartconfig[‘data_source’];

if (!isset($reportdata[$datasource])) {
return [];
}

$rawdata = $reportdata[$data_source];

// Transform data based on chart requirements
return $this->transformDataForChart($rawdata, $chartconfig);
}

private function transformDataForChart($rawdata, $chartconfig) {
// Transform raw data into chart-ready format
$transformed_data = [];

switch ($chart_config[‘type’]) {
case ‘line’:
case ‘area’:
$transformeddata = $this->transformTimeSeriesData($rawdata);
break;
case ‘bar’:
$transformeddata = $this->transformCategoricalData($rawdata);
break;
case ‘heatmap’:
$transformeddata = $this->transformHeatmapData($rawdata);
break;
case ‘pie’:
$transformeddata = $this->transformPieData($rawdata);
break;
}

return $transformed_data;
}

private function renderReportTemplate($template_name, $data) {
// Use Twig or similar templating engine
$templatepath = plugindirpath(FILE) . “templates/reports/{$templatename}”;

if (!fileexists($templatepath)) {
throw new Exception(“Report template ‘{$template_name}’ not found”);
}

// Simplified template rendering (in production, use Twig)
$templatecontent = filegetcontents($templatepath);

// Basic variable replacement
foreach ($data as $key => $value) {
if (isarray($value) || isobject($value)) {
$value = json_encode($value);
}
$templatecontent = strreplace(“{{{$key}}}”, $value, $template_content);
}

return $template_content;
}

private function convertReportFormat($content, $format) {
switch ($format) {
case ‘PDF’:
return $this->convertToPDF($content);
case ‘Excel’:
return $this->convertToExcel($content);
case ‘HTML’:
return $content;
case ‘JSON’:
return json_encode([‘content’ => $content]);
default:
throw new Exception(“Unsupported format: {$format}”);
}
}

public function scheduleReport($report_type, $schedule, $recipients, $parameters = []) {
return $this->scheduler->scheduleReport([
‘reporttype’ => $reporttype,
‘schedule’ => $schedule,
‘recipients’ => $recipients,
‘parameters’ => $parameters,
‘format’ => ‘PDF’
]);
}

public function createCustomReport($name, $description, $data_queries, $charts, $template) {
$reportid = ‘custom‘ . time();

$this->reporttemplates[$reportid] = [
‘name’ => $name,
‘description’ => $description,
‘template’ => $template,
‘dataqueries’ => $dataqueries,
‘charts’ => $charts,
‘custom’ => true
];

return $report_id;
}

public function exportReportData($report_type, $parameters = [], $format = ‘CSV’) {
$template = $this->reporttemplates[$reporttype];
$reportdata = $this->gatherReportData($template[‘dataqueries’], $parameters);

return $this->exportData($report_data, $format);
}

private function exportData($data, $format) {
switch ($format) {
case ‘CSV’:
return $this->exportToCSV($data);
case ‘JSON’:
return json_encode($data);
case ‘XML’:
return $this->exportToXML($data);
default:
throw new Exception(“Unsupported export format: {$format}”);
}
}

// Helper methods for data transformation
private function transformTimeSeriesData($data) {
$transformed = [‘labels’ => [], ‘datasets’ => []];

foreach ($data as $point) {
$transformed[‘labels’][] = $point[‘date’];
// Add dataset values…
}

return $transformed;
}

private function transformCategoricalData($data) {
$transformed = [‘labels’ => [], ‘data’ => []];

foreach ($data as $point) {
$transformed[‘labels’][] = $point[‘category’];
$transformed[‘data’][] = $point[‘value’];
}

return $transformed;
}

private function transformHeatmapData($data) {
// Transform for heatmap visualization
return $data;
}

private function transformPieData($data) {
$transformed = [‘labels’ => [], ‘data’ => []];

foreach ($data as $point) {
$transformed[‘labels’][] = $point[‘label’];
$transformed[‘data’][] = $point[‘value’];
}

return $transformed;
}

// Format conversion methods
private function convertToPDF($content) {
// Use TCPDF or similar library
requireonce plugindir_path(FILE) . ‘vendor/tcpdf/tcpdf.php’;

$pdf = new TCPDF();
$pdf->AddPage();
$pdf->writeHTML($content);
return $pdf->Output(”, ‘S’); // Return as string
}

private function convertToExcel($content) {
// Use PhpSpreadsheet or similar library
requireonce plugindir_path(FILE) . ‘vendor/phpoffice/phpspreadsheet/src/Bootstrap.php’;

$spreadsheet = new \PhpOffice\PhpSpreadsheet\Spreadsheet();
$sheet = $spreadsheet->getActiveSheet();
$sheet->setCellValue(‘A1’, ‘Report Content’);
$sheet->setCellValue(‘A2’, strip_tags($content));

$writer = new \PhpOffice\PhpSpreadsheet\Writer\Xlsx($spreadsheet);
ob_start();
$writer->save(‘php://output’);
return obgetclean();
}

private function exportToCSV($data) {
$output = fopen(‘php://temp’, ‘r+’);

// Write headers if data is array of arrays
if (isarray($data) && isset($data[0]) && isarray($data[0])) {
fputcsv($output, array_keys($data[0]));
}

// Write data
foreach ($data as $row) {
if (is_array($row)) {
fputcsv($output, $row);
}
}

rewind($output);
$csv = streamgetcontents($output);
fclose($output);

return $csv;
}

private function exportToXML($data) {
$xml = new SimpleXMLElement(‘‘);

foreach ($data as $key => $value) {
if (is_array($value)) {
$section = $xml->addChild($key);
foreach ($value as $item) {
if (is_array($item)) {
$itemElement = $section->addChild(‘item’);
foreach ($item as $itemKey => $itemValue) {
$itemElement->addChild($itemKey, htmlspecialchars($itemValue));
}
}
}
} else {
$xml->addChild($key, htmlspecialchars($value));
}
}

return $xml->asXML();
}
}
`

Support Resources

Documentation

Share this article

Was this article helpful?

Help us improve our documentation

Still need help?

Our support team is ready to assist you with personalized guidance for your workspace.

Submit a support ticket